Token

c384b8979dbf62cd3c9dc4a5fe8ef73c10d30f4a8c02f7ae996c3c5a1aaa57ed

ID
c384b8979dbf62cd3c9dc4a5fe8ef73c10d30f4a8c02f7ae996c3c5a1aaa57ed
Name
Put_A_fakeUSD_ERG_806499999_2023-04-16_per_1
Emission amount
1
Decimals
0
Description
0
Type
EIP-004
Issuer Box
{
  "boxId": "c384b8979dbf62cd3c9dc4a5fe8ef73c10d30f4a8c02f7ae996c3c5a1aaa57ed",
  "transactionId": "ec1da93991845bd83d97a632decb85d464293da92e3c18ade545f9ab401c82a5",
  "blockId": "20f5f1520f6284f6495ef62ff69c7aa8ded36189b5fdcd22cc802a28d3fc1ed2",
  "value": 810699999,
  "index": 0,
  "globalIndex": 25645062,
  "creationHeight": 918905,
  "settlementHeight": 918908,
  "ergoTree": "106405000400040004020406040204000500040405c8010400040e0e20777777e5051f8a6bc30827ee41dd39e04bca1dba35236b9a26b494e0bac84f330e0130050205c0ac800205020100040204000402050006030f42400580f0b252040404020580f0b25205c0ac8002050205020404040205c0ac8002041201000580e8dd0d04040400040005000500050005c80105e80705d00f05a01f05c03e05d08c010590cb0105c0b80205e0d4030580f10405a08d0605e0c50805e0b60d05c08b1105a0e01405a0d11905a0c21e05c0cf2405c0843d05020500050204000402050804080480acc99dfdffffffff01060100040a05d00f040c0480deada90105a09c0104000e206666668ce353fefd146d14b41482d526ebf26a5a7d204f36570c59c558136b83043c04040404040604060410060203e80100040404080400040204000404040005000402040004000402010005c0a386010100d82dd601db6308a7d60286028300027300d603b272017301017202d604e4c6a70763d605ed938c720301c5720493c2a7c27204d6069572057204a7d607e4c672060908d608ef7205d609b2a5730200d60ac27209d60bc2a7d60cb2a5730300d60de4c672060811d60eb2720d730400d60fdb6903db6503fed61099720e720fd611db63087209d612b272117305017202d6138c721202d6148c720302d61593b2720d7306007307d616b2720d730800d6179c72167309d618b27211730a017202d6198c721802d61ac1a7d61bb2720d730b00d61c8c721801d61dc57206d61e730cd61f730dd6209593720a720bededededededed93721c721d927219730e92c17209730feceded7215938c721201721e9272137310ef721593e4c67209040ee4c6a7040e93e4c67209050e721f93e4c67209060e721f93e4c67209076372067311d621e4c67206050ed62290720f720ed623c17209d6248cb27201731201720202d625db6308720cd626b272257313017202d6278c722601d6288c722602d629d07207d62a93b2720d7314007315d62b7316d62c91720f720ed62d95722aeded7205722c8f720f9a720e7317ed72057222eb02ea027207d1ededed720893b1a5731894720a720b94c2720c720bd1ececec95eded720893b1a47319927210731aededed7220eded92c17209731b93e4c672090763a7ecededed721593721372149372199a9d997214731c7217731d93b17211731eededef721593b17211731f9372199d99721a7320721b93c2720c722192c1720cb2720d732100732295ededefed722291720f99720e732393b1a4732491b1db6501fe7325d810d62eb2db6501fe732600d62f9972147219d630e4c6722e0405d631957215a273279c997230721b7216a273289c99721b72307216d6328314057329732a732b732c732d732e732f7330733173327333733473357336733773387339733a733b733cd633dc0c1dad7232d90133059c72337233017232d634dc0c1aad7233d901345995928c7234017210733d733e02733f7340d635b27233997234734100d6368c723502d637b27233723400d6388c723501d6399a7e7236069d9c7e998c7237027236067e9972107238067e998c723701723806d63a9d9c9c9c7e9c7342b2720d734300067e7216067e721b0672397e734406d63ba2734599723a9d9c9c723a7eb2720d734600067ea2997230721b99721b7230067e9c7347721b06d63c95722a9a7e723106723b9a7e7231069a723b9d9c9c723b7eb2720d7348000672397e734906d63d9c7e722f0699723c9e723c7e734a06edededededededededed938cb2db6308722e734b0001734c90a39ae4c6722e0504734d7220937223721aeced72159372137224ef7215937227721d937228722f93c2b2a5734e007229927ec1b2a5734f0006a2722b723d93c2b2a57350007221927ec1b2a573510006a2722b9d9c723d7eb2720d735200067353735495ededed722d93b1a4735593b1a5735693b1db6501fe7357d806d62e957215997224721399721a7223d62f9572159d722e72179d722e9c721b7216d630b2db6308b2a47358007359017202d631b2a5735a00d632db63087231d633b27232735b017202edededed93722f95938c723001721d8c723002735c72209372197214ecededededed7215937227721e937228722e93b17225735d92c172319c9c722f721b721693b17232735eedededededef721592c1720c722e93b17225735f938c723301721e928c7233029c722f721793b17232736093c272317229736195ed722cef722deced93720a7229eded721593721c721e9372197214edef721592722399721a73627363",
  "ergoTreeConstants": "0: 0\n1: 0\n2: 0\n3: 1\n4: 3\n5: 1\n6: 0\n7: 0\n8: 2\n9: 100\n10: 0\n11: 7\n12: Coll(119,119,119,-27,5,31,-118,107,-61,8,39,-18,65,-35,57,-32,75,-54,29,-70,53,35,107,-102,38,-76,-108,-32,-70,-56,79,51)\n13: Coll(48)\n14: 1\n15: 2100000\n16: 1\n17: false\n18: 1\n19: 0\n20: 1\n21: 0\n22: CBigInt(1000000)\n23: 86400000\n24: 2\n25: 1\n26: 86400000\n27: 2100000\n28: 1\n29: 1\n30: 2\n31: 1\n32: 2100000\n33: 9\n34: false\n35: 14400000\n36: 2\n37: 0\n38: 0\n39: 0\n40: 0\n41: 0\n42: 100\n43: 500\n44: 1000\n45: 2000\n46: 4000\n47: 9000\n48: 13000\n49: 20000\n50: 30000\n51: 40000\n52: 50000\n53: 70000\n54: 110000\n55: 140000\n56: 170000\n57: 210000\n58: 250000\n59: 300000\n60: 500000\n61: 1\n62: 0\n63: 1\n64: 0\n65: 1\n66: 4\n67: 4\n68: 1775840000\n69: CBigInt(0)\n70: 5\n71: 1000\n72: 6\n73: 177584000\n74: 10000\n75: 0\n76: Coll(102,102,102,-116,-29,83,-2,-3,20,109,20,-76,20,-126,-43,38,-21,-14,106,90,125,32,79,54,87,12,89,-59,88,19,107,-125)\n77: 30\n78: 2\n79: 2\n80: 3\n81: 3\n82: 8\n83: CBigInt(1000)\n84: false\n85: 2\n86: 4\n87: 0\n88: 1\n89: 0\n90: 2\n91: 0\n92: 0\n93: 1\n94: 0\n95: 0\n96: 1\n97: false\n98: 1100000\n99: false",
  "ergoTreeScript": "{\n  val coll1 = SELF.tokens\n  val tuple2 = (Coll[Byte](), placeholder[Long](0))\n  val tuple3 = coll1.getOrElse(placeholder[Int](1), tuple2)\n  val box4 = SELF.R7[Box].get\n  val bool5 = (tuple3._1 == box4.id) && (SELF.propositionBytes == box4.propositionBytes)\n  val box6 = if (bool5) { box4 } else { SELF }\n  val prop7 = box6.R9[SigmaProp].get\n  val bool8 = !bool5\n  val box9 = OUTPUTS(placeholder[Int](2))\n  val coll10 = box9.propositionBytes\n  val coll11 = SELF.propositionBytes\n  val box12 = OUTPUTS(placeholder[Int](3))\n  val coll13 = box6.R8[Coll[Long]].get\n  val l14 = coll13(placeholder[Int](4))\n  val l15 = CONTEXT.preHeader.timestamp\n  val l16 = l14 - l15\n  val coll17 = box9.tokens\n  val tuple18 = coll17.getOrElse(placeholder[Int](5), tuple2)\n  val l19 = tuple18._2\n  val l20 = tuple3._2\n  val bool21 = coll13(placeholder[Int](6)) == placeholder[Long](7)\n  val l22 = coll13(placeholder[Int](8))\n  val l23 = l22 * placeholder[Long](9)\n  val tuple24 = coll17.getOrElse(placeholder[Int](10), tuple2)\n  val l25 = tuple24._2\n  val l26 = SELF.value\n  val l27 = coll13(placeholder[Int](11))\n  val coll28 = tuple24._1\n  val coll29 = box6.id\n  val coll30 = placeholder[Coll[Byte]](12)\n  val coll31 = placeholder[Coll[Byte]](13)\n  val bool32 = if (coll10 == coll11) {\n    (\n      (\n        (\n          (\n            (((coll28 == coll29) && (l25 >= placeholder[Long](14))) && (box9.value >= placeholder[Long](15))) && (\n              ((bool21 && (tuple18._1 == coll30)) && (l19 >= placeholder[Long](16))) || (!bool21)\n            )\n          ) && (box9.R4[Coll[Byte]].get == SELF.R4[Coll[Byte]].get)\n        ) && (box9.R5[Coll[Byte]].get == coll31)\n      ) && (box9.R6[Coll[Byte]].get == coll31)\n    ) && (box9.R7[Box].get == box6)\n  } else { placeholder[Boolean](17) }\n  val coll33 = box6.R5[Coll[Byte]].get\n  val bool34 = l15 <= l14\n  val l35 = box9.value\n  val l36 = coll1.getOrElse(placeholder[Int](18), tuple2)._2\n  val coll37 = box12.tokens\n  val tuple38 = coll37.getOrElse(placeholder[Int](19), tuple2)\n  val coll39 = tuple38._1\n  val l40 = tuple38._2\n  val coll41 = prop7.propBytes\n  val bool42 = coll13(placeholder[Int](20)) == placeholder[Long](21)\n  val bi43 = placeholder[BigInt](22)\n  val bool44 = l15 > l14\n  val bool45 = if (bool42) { (bool5 && bool44) && (l15 < l14 + placeholder[Long](23)) } else { bool5 && bool34 }\n  prop7 && sigmaProp(((bool8 && (OUTPUTS.size == placeholder[Int](24))) && (coll10 != coll11)) && (box12.propositionBytes != coll11)) || sigmaProp(\n    (\n      (\n        if ((bool8 && (INPUTS.size == placeholder[Int](25))) && (l16 >= placeholder[Long](26))) {\n          (\n            (\n              bool32 && (\n                ((box9.value >= placeholder[Long](27)) && (box9.R7[Box].get == SELF)) && (\n                  (\n                    ((bool21 && (l19 == l20)) && (l25 == l20 - placeholder[Long](28) / l23 + placeholder[Long](29))) && (coll17.size == placeholder[Int](30))\n                  ) || (((!bool21) && (coll17.size == placeholder[Int](31))) && (l25 == l26 - placeholder[Long](32) / l27))\n                )\n              )\n            ) && (box12.propositionBytes == coll33)\n          ) && (box12.value >= coll13(placeholder[Int](33)))\n        } else { placeholder[Boolean](34) } || if (((!(bool34 && (l15 > l14 - placeholder[Long](35)))) && (INPUTS.size == placeholder[Int](36))) && (\n          CONTEXT.dataInputs.size > placeholder[Int](37)\n        )) {(\n          val box46 = CONTEXT.dataInputs(placeholder[Int](38))\n          val l47 = l20 - l25\n          val l48 = box46.R4[Long].get\n          val l49 = if (bool21) { max(placeholder[Long](39), l48 - l27 * l22) } else { max(placeholder[Long](40), l27 - l48 * l22) }\n          val coll50 = Coll[Long](\n            placeholder[Long](41), placeholder[Long](42), placeholder[Long](43), placeholder[Long](44), placeholder[Long](45), placeholder[Long](\n              46\n            ), placeholder[Long](47), placeholder[Long](48), placeholder[Long](49), placeholder[Long](50), placeholder[Long](51), placeholder[Long](\n              52\n            ), placeholder[Long](53), placeholder[Long](54), placeholder[Long](55), placeholder[Long](56), placeholder[Long](57), placeholder[Long](\n              58\n            ), placeholder[Long](59), placeholder[Long](60)\n          )\n          val coll51 = coll50.map({(l51: Long) => l51 * l51 }).zip(coll50)\n          val i52 = coll51.map({(tuple52: (Long, Long)) => if (tuple52._1 >= l16) { placeholder[Long](61) } else { placeholder[Long](62) } }).indexOf(\n            placeholder[Long](63), placeholder[Int](64)\n          )\n          val tuple53 = coll51(i52 - placeholder[Int](65))\n          val l54 = tuple53._2\n          val tuple55 = coll51(i52)\n          val l56 = tuple53._1\n          val bi57 = l54.toBigInt + tuple55._2 - l54.toBigInt * l16 - l56.toBigInt / tuple55._1 - l56.toBigInt\n          val bi58 = placeholder[Long](66) * coll13(placeholder[Int](67)).toBigInt * l22.toBigInt * l27.toBigInt * bi57 / placeholder[Int](68).toBigInt\n          val bi59 = max(\n            placeholder[BigInt](69), bi58 - bi58 * coll13(placeholder[Int](70)).toBigInt * max(l48 - l27, l27 - l48).toBigInt / placeholder[Long](\n              71\n            ) * l27.toBigInt\n          )\n          val bi60 = if (bool42) { l49.toBigInt + bi59 } else {\n            l49.toBigInt + bi59 + bi59 * coll13(placeholder[Int](72)).toBigInt * bi57 / placeholder[Int](73).toBigInt\n          }\n          val bi61 = l47.toBigInt * bi60 - bi60 % placeholder[Long](74).toBigInt\n          (\n            (\n              (\n                (\n                  (\n                    (\n                      (\n                        (\n                          (\n                            (box46.tokens(placeholder[Int](75))._1 == placeholder[Coll[Byte]](76)) && (HEIGHT <= box46.R5[Int].get + placeholder[Int](77))\n                          ) && bool32\n                        ) && (l35 == l26)\n                      ) && ((bool21 && (l19 == l36)) || (!bool21))\n                    ) && (coll39 == coll29)\n                  ) && (l40 == l47)\n                ) && (OUTPUTS(placeholder[Int](78)).propositionBytes == coll41)\n              ) && (OUTPUTS(placeholder[Int](79)).value.toBigInt >= max(bi43, bi61))\n            ) && (OUTPUTS(placeholder[Int](80)).propositionBytes == coll33)\n          ) && (OUTPUTS(placeholder[Int](81)).value.toBigInt >= max(bi43, bi61 * coll13(placeholder[Int](82)).toBigInt / placeholder[BigInt](83)))\n        )} else { placeholder[Boolean](84) }\n      ) || if (((bool45 && (INPUTS.size == placeholder[Int](85))) && (OUTPUTS.size == placeholder[Int](86))) && (\n        CONTEXT.dataInputs.size == placeholder[Int](87)\n      )) {(\n        val l46 = if (bool21) { l36 - l19 } else { l26 - l35 }\n        val l47 = if (bool21) { l46 / l23 } else { l46 / l27 * l22 }\n        val tuple48 = INPUTS(placeholder[Int](88)).tokens.getOrElse(placeholder[Int](89), tuple2)\n        val box49 = OUTPUTS(placeholder[Int](90))\n        val coll50 = box49.tokens\n        val tuple51 = coll50.getOrElse(placeholder[Int](91), tuple2)\n        (\n          (((l47 == if (tuple48._1 == coll29) { tuple48._2 } else { placeholder[Long](92) }) && bool32) && (l25 == l20)) && (\n            (\n              ((((bool21 && (coll39 == coll30)) && (l40 == l46)) && (coll37.size == placeholder[Int](93))) && (box49.value >= l47 * l27 * l22)) && (\n                coll50.size == placeholder[Int](94)\n              )\n            ) || (\n              (((((!bool21) && (box12.value >= l46)) && (coll37.size == placeholder[Int](95))) && (tuple51._1 == coll30)) && (tuple51._2 >= l47 * l23)) && (\n                coll50.size == placeholder[Int](96)\n              )\n            )\n          )\n        ) && (box49.propositionBytes == coll41)\n      )} else { placeholder[Boolean](97) }\n    ) || if (bool44 && (!bool45)) {\n      ((coll10 == coll41) && ((bool21 && (coll28 == coll30)) && (l25 == l20))) || ((!bool21) && (l35 >= l26 - placeholder[Long](98)))\n    } else { placeholder[Boolean](99) }\n  )\n}",
  "address": "NJVj4HGaHNt3Rfr73w4qNYdNUCiBm2DgfmhptL8aTACNrokLRrEAZKECyr9txXZFa6CPG6i6YeUEN4wdBejLcC8mwAc6FaUjwMYdCCi9oCXBvrz9tGA19veNyiuEvi4Mdz61KXXQeewA3XUjwhJYxYNK2ayAcuLd3eUnNcKHis4yZJodDt6HqkJJ33vUmdeMnoPydW23HLCpuU6cmc6ek9R7G7czYEAzo7ekBdELjG1xfcUCrZHzkuFGhKqgxA4jrt2EisAagnn2xpHkPUqQKK5mGE8M7MZ8wZkTajyrKDzPphLEcFHC6TB4nbeFPB7VHB4Wj1HNc4G26pCorhzsAZLmbhemd25RG1vLWtM9zwZNJTTQ7Ah2KfWPrPqiTU9pqWtiCa5zTHsDkrqs975FwgcF8GPMBtxRC36izjgcJ4QwgMz7C2woKdG6GDvripQkJdMtedFQzatQ3mMniRQMbC953yrn4N8hQzYBvuZgkn4HD2XFjgCCRzPp1DDvcQPV8DvWJd8pgAhdCwYkbqXkAnpiVRdJGZ9fjka6UGsYcjzQWLrnbazBzRSrUV4nHKgnqEYChRcxki4Adu5MQq8CQB7a3GMLLCa68X3YazURWdNFxDhmsym9oSjweyEGhbDLcE556tBZtxq8rb5a4qahT269CqhpESCzLsCkubTgKZsYS3V7Vkfz8yMSYXARMBaY5b8FosjWrZyEXy21gjTd76QejZN5aK7C1hj31Y7BucfWzJ82qe8uhp2YsXX6MqCuX4vT4iaaCfPM39ChPHqR2WgdHdLija1bQjFWBTVosTvCdHmfX8uPnoTxxW74vYZMJv6EnG3wVFipPKt8eeUHTxnU38bDpEw1XhoDz2xmL7j47nhsEfFS8QmHxhKrz736HPUXRa7xCdTzg4rAcd1Qw36Zqru2MmR6EwL6mJ8eeJsnAd7Fp1PpuMFTu3gBLkg15ZG8N7kaM2LAAmgeBxQyAQqtMkeDffc46ZNths84jY5SiGkGwwJkyVNwDyt7z4P9428MezH2ERxtt9N2NQJ7wu1g2AjuNZocxefEufSGrGpnMDB8eUrKZdGoqQCwZgYfgmL5nZkvous4xrbSwfRYnAmUx9wu1yf2oHoai7AfhfuAattDDoZKvxbKNWed9Ncq4n9gp2Mn8KYuxtmcBmvVCPpvj51mqsJiuRB44XSQnWVWGQern67H1TMX2wVQncBjFYrdwAU3BmEue38zhS5eMtViaLGBSxLmfzc6Nm2HMPcjzsnKokU65LtJt4bVtiwNLcBA7DFujX36pAzsgMSrMHDCiTye3pjejg2TxSo9GvUuDVCJebWuhyqogcZW1REzqimhDmAJw2zJrBwzxwQ171bvSMB2PrknbZ9A2TcHiBubzzB1r7u5EoLuRNkpeeLZuPncZ3fy2qzUJ2ZgS18etbiAVwzmvDuru7rJ5ZySs1rEWeWVU36kFqUhu259CMyGbhg4G1ZZQLusaF7HPrgQJLpsGxsZEcvyvXYsaGpoVSiDyeWetzPaKtNyqNRvzcrYQrt5SmXnZzmEUFV9x4gKv5yph1nBgodCcGnHwDV57aVdADGGjhDUEFoSPPzPsxAAEN3So4uSaiYdCssqMfcBfbg15fzdqAxya9Cp16HaACkLYFmkDjmW26cwQ7EUSCGNa1oqvT7BmPhEcP2gySzL1Hx4uPp1vJkHQdVSfpMsmtf4NzcdenBdbFEFNacsPimXsEcs2A5PG24MbsVrBNA9qPwy4fphdHktUuYc9updnpMFPFQKbWsDtQJ76Z38YQuVyCT57hnybdtsvBKqGLmdQ16HMJzhyXawAbb6A9ng3R4iqTyGKBtj3DgtSvXgZnMLSPVEigM4NSeBKkFfNmMyMXU1AoqMbtAofvkXBUPiJQzx3TwuerZ4UERrpEAPZYiLy1YkBrcRCTpRqbnadX4SqeqUsYqFNfQpfpSL3hGiHgeaisqkRMMaReqGXCJHqLQ4ccFBSXasMFNUKkrTpiykWW745aBzpF9kXSEoXPvkWuXoaWL1TUve5W9LnS9SRwuZjkc2miLCNaMF3ehu3EKmFcqymtVYVzZrxrwfo1MyXXzNiFWYzHbo7zYeDb9j5aCfpEd4Xa76sCbmRRi7LivoWMyF2asvX4xQS1FZ5d6fMokQxwChVnGP4C8oRpGM5FyhosKQJMNy73614ngr3JUeoQNYEuZnyicv622A3rd6jgSUDmepSgVUzr3mZENGZ2P6hiUWo4nSYjyj6QtTnurMJNUQQVgd1vR9CHm1qRaHZ8yWb9GX",
  "assets": [],
  "additionalRegisters": {
    "R5": {
      "serializedValue": "0e240008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6",
      "sigmaType": "Coll[SByte]",
      "renderedValue": "0008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6"
    },
    "R6": {
      "serializedValue": "0e0130",
      "sigmaType": "Coll[SByte]",
      "renderedValue": "30"
    },
    "R8": {
      "serializedValue": "110a0202028090e4f5f061e807e807d804beda9181060a80897a",
      "sigmaType": "Coll[SLong]",
      "renderedValue": "[1,1,1,1681603200000,500,500,300,806499999,5,1000000]"
    },
    "R7": {
      "serializedValue": "63c0ac80020008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6bbf43601777777e5051f8a6bc30827ee41dd39e04bca1dba35236b9a26b494e0bac84f33e907060e2343414c4c5f66616b655553445f4552475f315f323032322d31322d32305f7065725f310e000e01306380e1eb170008cd0358ca7a890f5c237eca72e0d7f8290e808b089690504a0c47805cf489767ea53ec6c0360000f875b3cc3016a06b75ca5941a3440fc7e2141256869047a15f2e687698904930011109000280e0a3cda561e807e807d804020a80897a1a02240008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6240008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6535558c39e5834cf795b41f1635a36c7b7c5a84f9cb34f2f5d33a35a03fe882800",
      "sigmaType": null,
      "renderedValue": null
    },
    "R9": {
      "serializedValue": "08cd02042a3559387831c22aaec64a86969b6f2e4b7626b3f94cbec08123c5dc88d23e",
      "sigmaType": "SSigmaProp",
      "renderedValue": "02042a3559387831c22aaec64a86969b6f2e4b7626b3f94cbec08123c5dc88d23e"
    },
    "R4": {
      "serializedValue": "0e2c5075745f415f66616b655553445f4552475f3830363439393939395f323032332d30342d31365f7065725f31",
      "sigmaType": "Coll[SByte]",
      "renderedValue": "5075745f415f66616b655553445f4552475f3830363439393939395f323032332d30342d31365f7065725f31"
    }
  },
  "spentTransactionId": "6d231ce09a3d5f609d08eb7601242faca4628c862eaff7710aedfddd6d2b0753",
  "mainChain": true
}