Token
bdc7a89f2703e9746ef13f4690da9d870a235be3aff28fc01bf2bd35842c36b1
ID
bdc7a89f2703e9746ef13f4690da9d870a235be3aff28fc01bf2bd35842c36b1
Name
CALL_fakeUSD_ERG_706499999_2023-04-30_per_1
Emission amount
11
Decimals
0
Description
0
Type
EIP-004
Issuer Box
{ "boxId": "bdc7a89f2703e9746ef13f4690da9d870a235be3aff28fc01bf2bd35842c36b1", "transactionId": "1c2f0d40db39cc5308fb411718f95e27f02c42a9be45b744787267606032dce1", "blockId": "e1dd444a107f860a34b55c78692ddeca8bef3389ab1282c849b5e5cbf927a390", "value": 4200000, "index": 0, "globalIndex": 25355898, "creationHeight": 913179, "settlementHeight": 913182, "ergoTree": "10640500040004020e20777777e5051f8a6bc30827ee41dd39e04bca1dba35236b9a26b494e0bac84f33050005000100040004020404040005c0ac8002040205c80104020e01300502050201000400040c060203e8060302b5b00400050006030f42400580f0b252040404020580f0b2520404050205020100041001000580e8dd0d0404040004000500050005000580bab70305d21d0580e8dd0d05a63b0580f0b252059e91010580e0e5a40105b2cd010580b0fe9b0305e2c4020580e0fcb70605a4cb030580c0f9ef0c05c289050580a0f6a71305c09b060580c0eccf260580e5080580a0cfc76005e4f20d058080b2bf9a010580ca110580b089fbea0105e0d615058088ceb8e00205aec61a0580e092f6d503058ad41e0580909cf1c0050580c62505020500050204000402060104040606010a0601000408040a05a09c0104000e206666668ce353fefd146d14b41482d526ebf26a5a7d204f36570c59c558136b830404040404060406040e01000404040804000404040401000100d82dd601db6308a7d60286028300027300d603b272017301017202d6048c720302d605b272017302017202d6068c720502d6077303d60895ed91720473049172067305eded938c7203017207938c720501c5e4c6a7076393c2a7c2e4c6a707637306d609957208e4c6a70763a7d60ae4c672090908d60bef7208d60cb2a5730700d60dc2720cd60ec2a7d60fb2a5730800d610e4c672090811d611b27210730900d612db6903db6503fed6139972117212d614db6308720cd615b27214730a017202d6168c721502d617c1720cd618927217730bd619b27210730c00d61a9c7219730dd61bb27214730e017202d61c8c721b02d61d8c721501d61ec57209d61f730fd6209593720d720eedededededededed721893721d72079272167310938c721b01721e92721c731193e4c6720c040ee4c6a7040e93e4c6720c050e721f93e4c6720c060e721f93e4c6720c076372097312d621e4c67209050ed6229072127211d623b2db6308720f7313017202d6248c722301d6258c722302d626d0720ad627b27210731400d6287315d6297316d62a93b272107317007318d62b7319d62c9172127211d62d95722aeded7208722c8f72129a7211731aed72087222eb02ea02720ad1ededed720b93b1a5731b94720d720e94c2720f720ed1ececec95eded720b93b1a4731c927213731dededed72209593b17214731eededed7218937216720493721c9a9d997204731f721a732093e4c6720c0763a7732193c2720f722192c1720fb27210732200732395ededefed7222917212997211732493b1a4732591b1db6501fe7326d811d62eb2db6501fe732700d62f997206721cd630e4c6722e0405d631a273289c99723072277219d6327e722706d63383105986027329732a8602732b732c8602732d732e8602732f733086027331733286027333733486027335733686027337733886027339733a8602733b733c8602733d733e8602733f7340860273417342860273437344860273457346860273477348d634dc0c1aad7233d901345995928c72340172137349734a02734b734cd635b27233997234734d00d6367e8c72350206d637b27233723400d6387e8c72350106d6399a72369d9c997e8c723702067236997e7213067238997e8c723701067238d63a9d9c9c9c9c734e7eb27210734f00067e721906723272399c9c735072287229d63b7e723006d63ca2735199723a9d9c9c723a7eb2721073520006a299723b7232997232723b9c72287232d63d95722a9a7e723106723c9a7e7231069a723c9d9c9c723c7eb272107353000672399c72287229d63e9c7e722f0699723d9e723d7e735406ededededededededed938cb2db6308722e7355000173567220937217c1a79372167204937224721e937225722f93c2b2a57357007226927ec1b2a573580006a2722b723e93c2b2a57359007221927ec1b2a5735a0006a2722b9d9c723e7eb27210735b00067228735c95ededed722d93b1a4735d93b1a5735e93b1db6501fe735fd801d62e9972047216ededededed722093721c72069372247207937225722e93c2b2a5736000722692c1b2a57361009c9c9d722e721a72277219736295ed722cef722deded93720d722693721d720793721672047363", "ergoTreeConstants": "0: 0\n1: 0\n2: 1\n3: Coll(119,119,119,-27,5,31,-118,107,-61,8,39,-18,65,-35,57,-32,75,-54,29,-70,53,35,107,-102,38,-76,-108,-32,-70,-56,79,51)\n4: 0\n5: 0\n6: false\n7: 0\n8: 1\n9: 2\n10: 0\n11: 2100000\n12: 1\n13: 100\n14: 1\n15: Coll(48)\n16: 1\n17: 1\n18: false\n19: 0\n20: 6\n21: CBigInt(1000)\n22: CBigInt(177584)\n23: 0\n24: 0\n25: CBigInt(1000000)\n26: 86400000\n27: 2\n28: 1\n29: 86400000\n30: 2\n31: 1\n32: 1\n33: false\n34: 8\n35: false\n36: 14400000\n37: 2\n38: 0\n39: 0\n40: 0\n41: 0\n42: 0\n43: 3600000\n44: 1897\n45: 14400000\n46: 3795\n47: 86400000\n48: 9295\n49: 172800000\n50: 13145\n51: 432000000\n52: 20785\n53: 864000000\n54: 29394\n55: 1728000000\n56: 41569\n57: 2592000000\n58: 50912\n59: 5184000000\n60: 72000\n61: 12960000000\n62: 113842\n63: 20736000000\n64: 144000\n65: 31536000000\n66: 177584\n67: 47304000000\n68: 217495\n69: 63072000000\n70: 251141\n71: 94608000000\n72: 307584\n73: 1\n74: 0\n75: 1\n76: 0\n77: 1\n78: CBigInt(4)\n79: 3\n80: CBigInt(10)\n81: CBigInt(0)\n82: 4\n83: 5\n84: 10000\n85: 0\n86: Coll(102,102,102,-116,-29,83,-2,-3,20,109,20,-76,20,-126,-43,38,-21,-14,106,90,125,32,79,54,87,12,89,-59,88,19,107,-125)\n87: 2\n88: 2\n89: 3\n90: 3\n91: 7\n92: false\n93: 2\n94: 4\n95: 0\n96: 2\n97: 2\n98: false\n99: false", "ergoTreeScript": "{\n val coll1 = SELF.tokens\n val tuple2 = (Coll[Byte](), placeholder[Long](0))\n val tuple3 = coll1.getOrElse(placeholder[Int](1), tuple2)\n val l4 = tuple3._2\n val tuple5 = coll1.getOrElse(placeholder[Int](2), tuple2)\n val l6 = tuple5._2\n val coll7 = placeholder[Coll[Byte]](3)\n val bool8 = if ((l4 > placeholder[Long](4)) && (l6 > placeholder[Long](5))) {\n ((tuple3._1 == coll7) && (tuple5._1 == SELF.R7[Box].get.id)) && (SELF.propositionBytes == SELF.R7[Box].get.propositionBytes)\n } else { placeholder[Boolean](6) }\n val box9 = if (bool8) { SELF.R7[Box].get } else { SELF }\n val prop10 = box9.R9[SigmaProp].get\n val bool11 = !bool8\n val box12 = OUTPUTS(placeholder[Int](7))\n val coll13 = box12.propositionBytes\n val coll14 = SELF.propositionBytes\n val box15 = OUTPUTS(placeholder[Int](8))\n val coll16 = box9.R8[Coll[Long]].get\n val l17 = coll16(placeholder[Int](9))\n val l18 = CONTEXT.preHeader.timestamp\n val l19 = l17 - l18\n val coll20 = box12.tokens\n val tuple21 = coll20.getOrElse(placeholder[Int](10), tuple2)\n val l22 = tuple21._2\n val l23 = box12.value\n val bool24 = l23 >= placeholder[Long](11)\n val l25 = coll16(placeholder[Int](12))\n val l26 = l25 * placeholder[Long](13)\n val tuple27 = coll20.getOrElse(placeholder[Int](14), tuple2)\n val l28 = tuple27._2\n val coll29 = tuple21._1\n val coll30 = box9.id\n val coll31 = placeholder[Coll[Byte]](15)\n val bool32 = if (coll13 == coll14) {\n (\n (\n (\n ((((bool24 && (coll29 == coll7)) && (l22 >= placeholder[Long](16))) && (tuple27._1 == coll30)) && (l28 >= placeholder[Long](17))) && (\n box12.R4[Coll[Byte]].get == SELF.R4[Coll[Byte]].get\n )\n ) && (box12.R5[Coll[Byte]].get == coll31)\n ) && (box12.R6[Coll[Byte]].get == coll31)\n ) && (box12.R7[Box].get == box9)\n } else { placeholder[Boolean](18) }\n val coll33 = box9.R5[Coll[Byte]].get\n val bool34 = l18 <= l17\n val tuple35 = box15.tokens.getOrElse(placeholder[Int](19), tuple2)\n val coll36 = tuple35._1\n val l37 = tuple35._2\n val coll38 = prop10.propBytes\n val l39 = coll16(placeholder[Int](20))\n val bi40 = placeholder[BigInt](21)\n val bi41 = placeholder[BigInt](22)\n val bool42 = coll16(placeholder[Int](23)) == placeholder[Long](24)\n val bi43 = placeholder[BigInt](25)\n val bool44 = l18 > l17\n val bool45 = if (bool42) { (bool8 && bool44) && (l18 < l17 + placeholder[Long](26)) } else { bool8 && bool34 }\n prop10 && sigmaProp(((bool11 && (OUTPUTS.size == placeholder[Int](27))) && (coll13 != coll14)) && (box15.propositionBytes != coll14)) || sigmaProp(\n (\n (\n if ((bool11 && (INPUTS.size == placeholder[Int](28))) && (l19 >= placeholder[Long](29))) {\n (\n (\n bool32 && if (coll20.size == placeholder[Int](30)) {\n ((bool24 && (l22 == l4)) && (l28 == l4 - placeholder[Long](31) / l26 + placeholder[Long](32))) && (box12.R7[Box].get == SELF)\n } else { placeholder[Boolean](33) }\n ) && (box15.propositionBytes == coll33)\n ) && (box15.value >= coll16(placeholder[Int](34)))\n } else { placeholder[Boolean](35) } || if (((!(bool34 && (l18 > l17 - placeholder[Long](36)))) && (INPUTS.size == placeholder[Int](37))) && (\n CONTEXT.dataInputs.size > placeholder[Int](38)\n )) {(\n val box46 = CONTEXT.dataInputs(placeholder[Int](39))\n val l47 = l6 - l28\n val l48 = box46.R4[Long].get\n val l49 = max(placeholder[Long](40), l48 - l39 * l25)\n val bi50 = l39.toBigInt\n val coll51 = Coll[(Long, Long)](\n (placeholder[Long](41), placeholder[Long](42)), (placeholder[Long](43), placeholder[Long](44)), (placeholder[Long](45), placeholder[Long](46)), (\n placeholder[Long](47), placeholder[Long](48)\n ), (placeholder[Long](49), placeholder[Long](50)), (placeholder[Long](51), placeholder[Long](52)), (placeholder[Long](53), placeholder[Long](54)), (\n placeholder[Long](55), placeholder[Long](56)\n ), (placeholder[Long](57), placeholder[Long](58)), (placeholder[Long](59), placeholder[Long](60)), (placeholder[Long](61), placeholder[Long](62)), (\n placeholder[Long](63), placeholder[Long](64)\n ), (placeholder[Long](65), placeholder[Long](66)), (placeholder[Long](67), placeholder[Long](68)), (placeholder[Long](69), placeholder[Long](70)), (\n placeholder[Long](71), placeholder[Long](72)\n )\n )\n val i52 = coll51.map({(tuple52: (Long, Long)) => if (tuple52._1 >= l19) { placeholder[Long](73) } else { placeholder[Long](74) } }).indexOf(\n placeholder[Long](75), placeholder[Int](76)\n )\n val tuple53 = coll51(i52 - placeholder[Int](77))\n val bi54 = tuple53._2.toBigInt\n val tuple55 = coll51(i52)\n val bi56 = tuple53._1.toBigInt\n val bi57 = bi54 + tuple55._2.toBigInt - bi54 * l19.toBigInt - bi56 / tuple55._1.toBigInt - bi56\n val bi58 = placeholder[BigInt](78) * coll16(placeholder[Int](79)).toBigInt * l25.toBigInt * bi50 * bi57 / placeholder[BigInt](80) * bi40 * bi41\n val bi59 = l48.toBigInt\n val bi60 = max(placeholder[BigInt](81), bi58 - bi58 * coll16(placeholder[Int](82)).toBigInt * max(bi59 - bi50, bi50 - bi59) / bi40 * bi50)\n val bi61 = if (bool42) { l49.toBigInt + bi60 } else { l49.toBigInt + bi60 + bi60 * coll16(placeholder[Int](83)).toBigInt * bi57 / bi40 * bi41 }\n val bi62 = l47.toBigInt * bi61 - bi61 % placeholder[Long](84).toBigInt\n (\n (\n (\n (\n (\n ((((box46.tokens(placeholder[Int](85))._1 == placeholder[Coll[Byte]](86)) && bool32) && (l23 == SELF.value)) && (l22 == l4)) && (\n coll36 == coll30\n )\n ) && (l37 == l47)\n ) && (OUTPUTS(placeholder[Int](87)).propositionBytes == coll38)\n ) && (OUTPUTS(placeholder[Int](88)).value.toBigInt >= max(bi43, bi62))\n ) && (OUTPUTS(placeholder[Int](89)).propositionBytes == coll33)\n ) && (OUTPUTS(placeholder[Int](90)).value.toBigInt >= max(bi43, bi62 * coll16(placeholder[Int](91)).toBigInt / bi40))\n )} else { placeholder[Boolean](92) }\n ) || if (((bool45 && (INPUTS.size == placeholder[Int](93))) && (OUTPUTS.size == placeholder[Int](94))) && (\n CONTEXT.dataInputs.size == placeholder[Int](95)\n )) {(\n val l46 = l4 - l22\n ((((bool32 && (l28 == l6)) && (coll36 == coll7)) && (l37 == l46)) && (OUTPUTS(placeholder[Int](96)).propositionBytes == coll38)) && (\n OUTPUTS(placeholder[Int](97)).value >= l46 / l26 * l39 * l25\n )\n )} else { placeholder[Boolean](98) }\n ) || if (bool44 && (!bool45)) { ((coll13 == coll38) && (coll29 == coll7)) && (l22 == l4) } else { placeholder[Boolean](99) }\n )\n}", "address": "Shu6UHMycZRqT82QuB286x8YzeVM4XNft51MKuiNv3AhwqZgSxH9A2XryYaY11Ug3JKz4fncTZnXfqNgKuh7vFW4eBG6Q92mi4KbunBGVNG6QzXcmyVmweDydddMCFSerBvMejFULpoqBF58M1tZhpjX8NRU6VZuEXvoPdZy5v6F6VuTaEXbg3P57n6M3aQVoMhdWSpGPAK4MocR7TUzyP2XcKNqHWzySAehqWAovshfGDvvLtxAwz6tg2ZyihQsBRDDxz92Kf5WxAYJeeYK5bjsim6ctemD9eYJ1LjPnsDYANWmeYJzvddS24VJAD2nRhdcincWxSzJXBJ1wyLXtL4ShHb8GHzjSZkKNrHAgk8ht7f9hCs9yZjkg1wn3D1NyQcJrBgc35FyKXbMZ2FS2sk8QpGrmxQfWuTfwcnLoAfy7XjNcaoA8RNKgh46yMt4meHViVArcfrA2maJStYeK32pR2zAjgwVfN3G8KnRqsEuaRZF3dRR3YRF9umyTsXQMKbiUYQVVrijJjm1AcD4n1X2gxyaRwQ9DSwiciHUKNndmA9cbmubRSoH4uWLiDncmpyUVft8PYLaZ5VtWN1aBxRHFxAGueQCJ2qk7ms1nC2TV9N9b4GQWg5Pk4d9o6kwWUCgiPmsgMzWinUH2t4M3Py4gWtbXQ9V7zyE34BpggxetRvCWz4T9s3nwr1dwBALE1Dgg6KfYUJ6s2NJns8TypiZbu2e6UtX637KXoc7GHmja5yQxGz3NhBmGUTKWijpr63nqZ7g56Y4zye29TSJg4NxDbJm9QhBfvELnL8E7YNJyGPkfSA3ZdchDWvB2KcC1MDrtVNcQWKPa59XocR46MCDqG6vUMBsYdwpxm2dMnjUT6fJ58YXQWbWBjFWj5rhnYhkYeUsijJonfFR3BDDETJB167YfmFWGP31r3szikumR2uLGrymSkp4CteqAiYiCLe6fWrn92JMidjfFtsVpVd9LbCggXBGWzXQcEQpxY2nXfjakXeXft6UPx6WwjLazTvyQqkhfspe2aCfXM5r23KvrtygXn1fksGWvQkUUGLg8V7ysqiSsjVg9FMMcsPLb35Sqq7tzwjTeEAmU7gtWKpA1VhiWGCB9vCVhjKKiaKJy2rTQVaQRb8FVfvRDMzhJ3FTSYdY24cnb4Tke5CGzSyPziUNQKbX2DsvZu75U1tz6bCVeCKvBtd7fnrELaM9WKhQ2s5zDhgoa5fDrTcrHyoMEZwoq57Wv3K7idT7MPioRm8dfD3A5KrYdyqsYBfykNza5cVpBtKT2Sg8aaL29pxQKt3hzqf4X3y4ANxHyqGCBDG95jJfLm5QUwR31w9h5hTn4a7gK4zfKhhWrro8Ftaj58dJL2qUHstzKUF7ZG57HZNsyC7abBapN4EAzim5f4nMo9qpkw8uaf3KE1JYMowAS4SAbTkiVrrMMB29CBaxsz4hXmDQgKG6dgAhTFWP1qEtCscHBXPNFNrsFik56ZwGC6dXdtTrGCcM6jypK9ADenLvq9oXwjp33NaWsATH6r3N5438dAwaxWxY2T1FE829KETr5bzjzny5M3NhDKT1YZsAyV2mxqA5KUai5h4fkFkvBQG1bGpTvGWK6NXZxR4RcaK6ye1ujkH5XZZxTVoZGH3UXHrigjtFT4w4TSUGMax14Tih3VsQ1fuLRzFVGkxXF1xqfEKU6ivHWM1o2JAqXSQzxXiCAkh6X7ppsNNNyPwETBMMLH6qF4Nk3FUKanPMWTJnH5duVf8ZUnL7g66bKxmvxwHDaAtPCvdeWukJgEPSiU1By6kLa4YC1oSxwJJ1BjzhsL78kNCr5o1T1yVRMh4ZPMQcyrHqzy1LikTjiRYC9p1aWFETDyV8gL1w6mKJ8ddcjtEBYXf6dajXVRJEaYKJiQJB9vX8mQYvMC3j1ZgGwvWKaxyAT5nthpNyxsU9VR8Jve3xB9bVYq5Fd2p1jJqHCgDXDMT2rRg4phv79QvwH4N35WmNus9KQJkgpyXwsQwaZSJxqQyyyrip8CPDHdgiLNitCWsgsdyXCfmPPapUnySWJnkH2DVraboSVeuPAxNxMdEU4FEwjco3ojpyDBv85LDNzZkS5SgPMpbWTG698B9y5DnVn3cbRwhFNaE", "assets": [ { "tokenId": "777777e5051f8a6bc30827ee41dd39e04bca1dba35236b9a26b494e0bac84f33", "index": 0, "amount": 1001, "name": "fakeUSD", "decimals": 2, "type": "EIP-004" } ], "additionalRegisters": { "R5": { "serializedValue": "0e240008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6", "sigmaType": "Coll[SByte]", "renderedValue": "0008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6" }, "R6": { "serializedValue": "0e0130", "sigmaType": "Coll[SByte]", "renderedValue": "30" }, "R8": { "serializedValue": "1109020280b0acf7f961e807e807d804bed6e2a1050a80897a", "sigmaType": "Coll[SLong]", "renderedValue": "[1,1,1682812800000,500,500,300,706499999,5,1000000]" }, "R7": { "serializedValue": "63c0ac80020008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6bbf43601777777e5051f8a6bc30827ee41dd39e04bca1dba35236b9a26b494e0bac84f33e907060e2343414c4c5f66616b655553445f4552475f315f323032322d31322d32305f7065725f310e000e01306380e1eb170008cd0358ca7a890f5c237eca72e0d7f8290e808b089690504a0c47805cf489767ea53ec6c0360000f875b3cc3016a06b75ca5941a3440fc7e2141256869047a15f2e687698904930011109000280e0a3cda561e807e807d804020a80897a1a02240008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6240008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6535558c39e5834cf795b41f1635a36c7b7c5a84f9cb34f2f5d33a35a03fe882800", "sigmaType": null, "renderedValue": null }, "R9": { "serializedValue": "08cd02042a3559387831c22aaec64a86969b6f2e4b7626b3f94cbec08123c5dc88d23e", "sigmaType": "SSigmaProp", "renderedValue": "02042a3559387831c22aaec64a86969b6f2e4b7626b3f94cbec08123c5dc88d23e" }, "R4": { "serializedValue": "0e2b43414c4c5f66616b655553445f4552475f3730363439393939395f323032332d30342d33305f7065725f31", "sigmaType": "Coll[SByte]", "renderedValue": "43414c4c5f66616b655553445f4552475f3730363439393939395f323032332d30342d33305f7065725f31" } }, "spentTransactionId": "9aa168bc5331d1cd1e84c98adba0378618e7b28139b833277f3ccf532c5a48c9", "mainChain": true }