Token

19cf7c98ff35c587f37f88b2b9c431d80944e5a7c0d5b1fe7ef1c10e296c4d80

ID
19cf7c98ff35c587f37f88b2b9c431d80944e5a7c0d5b1fe7ef1c10e296c4d80
Name
CALL_fakeUSD_ERG_706499999_2023-04-30_per_1
Emission amount
11
Decimals
0
Description
0
Type
EIP-004
Issuer Box
{
  "boxId": "19cf7c98ff35c587f37f88b2b9c431d80944e5a7c0d5b1fe7ef1c10e296c4d80",
  "transactionId": "ac844bd71689c209eb9a898b1077be6f837eefba098303186cbb469aff1506c3",
  "blockId": "02f0f6fb6c34b870ae046b77f9febcb4d2faf95e25272a0a948ef8fdf601a137",
  "value": 4200000,
  "index": 0,
  "globalIndex": 25355406,
  "creationHeight": 913163,
  "settlementHeight": 913165,
  "ergoTree": "10630500040004020e20777777e5051f8a6bc30827ee41dd39e04bca1dba35236b9a26b494e0bac84f33050005000100040004020404040005c0ac8002040205c80104020e01300502050201000400040c060203e8060302b5b00400050006030f42400580f0b252040404020580f0b2520404050205020100041001000580e8dd0d040404000500050005000580bab70305d21d0580e8dd0d05a63b0580f0b252059e91010580e0e5a40105b2cd010580b0fe9b0305e2c4020580e0fcb70605a4cb030580c0f9ef0c05c289050580a0f6a71305c09b060580c0eccf260580e5080580a0cfc76005e4f20d058080b2bf9a010580ca110580b089fbea0105e0d615058088ceb8e00205aec61a0580e092f6d503058ad41e0580909cf1c0050580c62505020500050204000402060104040606010a0601000408040a05a09c0104000e206666668ce353fefd146d14b41482d526ebf26a5a7d204f36570c59c558136b830404040404060406040e01000404040804000404040401000100d82dd601db6308a7d60286028300027300d603b272017301017202d6048c720302d605b272017302017202d6068c720502d6077303d60895ed91720473049172067305eded938c7203017207938c720501c5e4c6a7076393c2a7c2e4c6a707637306d609957208e4c6a70763a7d60ae4c672090908d60bef7208d60cb2a5730700d60dc2720cd60ec2a7d60fb2a5730800d610e4c672090811d611b27210730900d612db6903db6503fed6139972117212d614db6308720cd615b27214730a017202d6168c721502d617c1720cd618927217730bd619b27210730c00d61a9c7219730dd61bb27214730e017202d61c8c721b02d61d8c721501d61ec57209d61f730fd6209593720d720eedededededededed721893721d72079272167310938c721b01721e92721c731193e4c6720c040ee4c6a7040e93e4c6720c050e721f93e4c6720c060e721f93e4c6720c076372097312d621e4c67209050ed6229072127211d623b2db6308720f7313017202d6248c722301d6258c722302d626d0720ad627b27210731400d6287315d6297316d62a93b272107317007318d62b7319d62c9172127211d62d95722aeded7208722c8f72129a7211731aed72087222eb02ea02720ad1ededed720b93b1a5731b94720d720e94c2720f720ed1ececec95eded720b93b1a4731c927213731dededed72209593b17214731eededed7218937216720493721c9a9d997204731f721a732093e4c6720c0763a7732193c2720f722192c1720fb27210732200732395edefed7222917212997211732493b1a47325d811d62eb2db6501fe732600d62f997206721cd630e4c6722e0405d631a273279c99723072277219d6327e722706d6338310598602732873298602732a732b8602732c732d8602732e732f8602733073318602733273338602733473358602733673378602733873398602733a733b8602733c733d8602733e733f860273407341860273427343860273447345860273467347d634dc0c1aad7233d901345995928c72340172137348734902734a734bd635b27233997234734c00d6367e8c72350206d637b27233723400d6387e8c72350106d6399a72369d9c997e8c723702067236997e7213067238997e8c723701067238d63a9d9c9c9c9c734d7eb27210734e00067e721906723272399c9c734f72287229d63b7e723006d63ca2735099723a9d9c9c723a7eb2721073510006a299723b7232997232723b9c72287232d63d95722a9a7e723106723c9a7e7231069a723c9d9c9c723c7eb272107352000672399c72287229d63e9c7e722f0699723d9e723d7e735306ededededededededed938cb2db6308722e7354000173557220937217c1a79372167204937224721e937225722f93c2b2a57356007226927ec1b2a573570006a2722b723e93c2b2a57358007221927ec1b2a573590006a2722b9d9c723e7eb27210735a00067228735b95ededed722d93b1a4735c93b1a5735d93b1db6501fe735ed801d62e9972047216ededededed722093721c72069372247207937225722e93c2b2a5735f00722692c1b2a57360009c9c9d722e721a72277219736195ed722cef722deded93720d722693721d720793721672047362",
  "ergoTreeConstants": "0: 0\n1: 0\n2: 1\n3: Coll(119,119,119,-27,5,31,-118,107,-61,8,39,-18,65,-35,57,-32,75,-54,29,-70,53,35,107,-102,38,-76,-108,-32,-70,-56,79,51)\n4: 0\n5: 0\n6: false\n7: 0\n8: 1\n9: 2\n10: 0\n11: 2100000\n12: 1\n13: 100\n14: 1\n15: Coll(48)\n16: 1\n17: 1\n18: false\n19: 0\n20: 6\n21: CBigInt(1000)\n22: CBigInt(177584)\n23: 0\n24: 0\n25: CBigInt(1000000)\n26: 86400000\n27: 2\n28: 1\n29: 86400000\n30: 2\n31: 1\n32: 1\n33: false\n34: 8\n35: false\n36: 14400000\n37: 2\n38: 0\n39: 0\n40: 0\n41: 0\n42: 3600000\n43: 1897\n44: 14400000\n45: 3795\n46: 86400000\n47: 9295\n48: 172800000\n49: 13145\n50: 432000000\n51: 20785\n52: 864000000\n53: 29394\n54: 1728000000\n55: 41569\n56: 2592000000\n57: 50912\n58: 5184000000\n59: 72000\n60: 12960000000\n61: 113842\n62: 20736000000\n63: 144000\n64: 31536000000\n65: 177584\n66: 47304000000\n67: 217495\n68: 63072000000\n69: 251141\n70: 94608000000\n71: 307584\n72: 1\n73: 0\n74: 1\n75: 0\n76: 1\n77: CBigInt(4)\n78: 3\n79: CBigInt(10)\n80: CBigInt(0)\n81: 4\n82: 5\n83: 10000\n84: 0\n85: Coll(102,102,102,-116,-29,83,-2,-3,20,109,20,-76,20,-126,-43,38,-21,-14,106,90,125,32,79,54,87,12,89,-59,88,19,107,-125)\n86: 2\n87: 2\n88: 3\n89: 3\n90: 7\n91: false\n92: 2\n93: 4\n94: 0\n95: 2\n96: 2\n97: false\n98: false",
  "ergoTreeScript": "{\n  val coll1 = SELF.tokens\n  val tuple2 = (Coll[Byte](), placeholder[Long](0))\n  val tuple3 = coll1.getOrElse(placeholder[Int](1), tuple2)\n  val l4 = tuple3._2\n  val tuple5 = coll1.getOrElse(placeholder[Int](2), tuple2)\n  val l6 = tuple5._2\n  val coll7 = placeholder[Coll[Byte]](3)\n  val bool8 = if ((l4 > placeholder[Long](4)) && (l6 > placeholder[Long](5))) {\n    ((tuple3._1 == coll7) && (tuple5._1 == SELF.R7[Box].get.id)) && (SELF.propositionBytes == SELF.R7[Box].get.propositionBytes)\n  } else { placeholder[Boolean](6) }\n  val box9 = if (bool8) { SELF.R7[Box].get } else { SELF }\n  val prop10 = box9.R9[SigmaProp].get\n  val bool11 = !bool8\n  val box12 = OUTPUTS(placeholder[Int](7))\n  val coll13 = box12.propositionBytes\n  val coll14 = SELF.propositionBytes\n  val box15 = OUTPUTS(placeholder[Int](8))\n  val coll16 = box9.R8[Coll[Long]].get\n  val l17 = coll16(placeholder[Int](9))\n  val l18 = CONTEXT.preHeader.timestamp\n  val l19 = l17 - l18\n  val coll20 = box12.tokens\n  val tuple21 = coll20.getOrElse(placeholder[Int](10), tuple2)\n  val l22 = tuple21._2\n  val l23 = box12.value\n  val bool24 = l23 >= placeholder[Long](11)\n  val l25 = coll16(placeholder[Int](12))\n  val l26 = l25 * placeholder[Long](13)\n  val tuple27 = coll20.getOrElse(placeholder[Int](14), tuple2)\n  val l28 = tuple27._2\n  val coll29 = tuple21._1\n  val coll30 = box9.id\n  val coll31 = placeholder[Coll[Byte]](15)\n  val bool32 = if (coll13 == coll14) {\n    (\n      (\n        (\n          ((((bool24 && (coll29 == coll7)) && (l22 >= placeholder[Long](16))) && (tuple27._1 == coll30)) && (l28 >= placeholder[Long](17))) && (\n            box12.R4[Coll[Byte]].get == SELF.R4[Coll[Byte]].get\n          )\n        ) && (box12.R5[Coll[Byte]].get == coll31)\n      ) && (box12.R6[Coll[Byte]].get == coll31)\n    ) && (box12.R7[Box].get == box9)\n  } else { placeholder[Boolean](18) }\n  val coll33 = box9.R5[Coll[Byte]].get\n  val bool34 = l18 <= l17\n  val tuple35 = box15.tokens.getOrElse(placeholder[Int](19), tuple2)\n  val coll36 = tuple35._1\n  val l37 = tuple35._2\n  val coll38 = prop10.propBytes\n  val l39 = coll16(placeholder[Int](20))\n  val bi40 = placeholder[BigInt](21)\n  val bi41 = placeholder[BigInt](22)\n  val bool42 = coll16(placeholder[Int](23)) == placeholder[Long](24)\n  val bi43 = placeholder[BigInt](25)\n  val bool44 = l18 > l17\n  val bool45 = if (bool42) { (bool8 && bool44) && (l18 < l17 + placeholder[Long](26)) } else { bool8 && bool34 }\n  prop10 && sigmaProp(((bool11 && (OUTPUTS.size == placeholder[Int](27))) && (coll13 != coll14)) && (box15.propositionBytes != coll14)) || sigmaProp(\n    (\n      (\n        if ((bool11 && (INPUTS.size == placeholder[Int](28))) && (l19 >= placeholder[Long](29))) {\n          (\n            (\n              bool32 && if (coll20.size == placeholder[Int](30)) {\n                ((bool24 && (l22 == l4)) && (l28 == l4 - placeholder[Long](31) / l26 + placeholder[Long](32))) && (box12.R7[Box].get == SELF)\n              } else { placeholder[Boolean](33) }\n            ) && (box15.propositionBytes == coll33)\n          ) && (box15.value >= coll16(placeholder[Int](34)))\n        } else { placeholder[Boolean](35) } || if ((!(bool34 && (l18 > l17 - placeholder[Long](36)))) && (INPUTS.size == placeholder[Int](37))) {(\n          val box46 = CONTEXT.dataInputs(placeholder[Int](38))\n          val l47 = l6 - l28\n          val l48 = box46.R4[Long].get\n          val l49 = max(placeholder[Long](39), l48 - l39 * l25)\n          val bi50 = l39.toBigInt\n          val coll51 = Coll[(Long, Long)](\n            (placeholder[Long](40), placeholder[Long](41)), (placeholder[Long](42), placeholder[Long](43)), (placeholder[Long](44), placeholder[Long](45)), (\n              placeholder[Long](46), placeholder[Long](47)\n            ), (placeholder[Long](48), placeholder[Long](49)), (placeholder[Long](50), placeholder[Long](51)), (placeholder[Long](52), placeholder[Long](53)), (\n              placeholder[Long](54), placeholder[Long](55)\n            ), (placeholder[Long](56), placeholder[Long](57)), (placeholder[Long](58), placeholder[Long](59)), (placeholder[Long](60), placeholder[Long](61)), (\n              placeholder[Long](62), placeholder[Long](63)\n            ), (placeholder[Long](64), placeholder[Long](65)), (placeholder[Long](66), placeholder[Long](67)), (placeholder[Long](68), placeholder[Long](69)), (\n              placeholder[Long](70), placeholder[Long](71)\n            )\n          )\n          val i52 = coll51.map({(tuple52: (Long, Long)) => if (tuple52._1 >= l19) { placeholder[Long](72) } else { placeholder[Long](73) } }).indexOf(\n            placeholder[Long](74), placeholder[Int](75)\n          )\n          val tuple53 = coll51(i52 - placeholder[Int](76))\n          val bi54 = tuple53._2.toBigInt\n          val tuple55 = coll51(i52)\n          val bi56 = tuple53._1.toBigInt\n          val bi57 = bi54 + tuple55._2.toBigInt - bi54 * l19.toBigInt - bi56 / tuple55._1.toBigInt - bi56\n          val bi58 = placeholder[BigInt](77) * coll16(placeholder[Int](78)).toBigInt * l25.toBigInt * bi50 * bi57 / placeholder[BigInt](79) * bi40 * bi41\n          val bi59 = l48.toBigInt\n          val bi60 = max(placeholder[BigInt](80), bi58 - bi58 * coll16(placeholder[Int](81)).toBigInt * max(bi59 - bi50, bi50 - bi59) / bi40 * bi50)\n          val bi61 = if (bool42) { l49.toBigInt + bi60 } else { l49.toBigInt + bi60 + bi60 * coll16(placeholder[Int](82)).toBigInt * bi57 / bi40 * bi41 }\n          val bi62 = l47.toBigInt * bi61 - bi61 % placeholder[Long](83).toBigInt\n          (\n            (\n              (\n                (\n                  (\n                    ((((box46.tokens(placeholder[Int](84))._1 == placeholder[Coll[Byte]](85)) && bool32) && (l23 == SELF.value)) && (l22 == l4)) && (\n                      coll36 == coll30\n                    )\n                  ) && (l37 == l47)\n                ) && (OUTPUTS(placeholder[Int](86)).propositionBytes == coll38)\n              ) && (OUTPUTS(placeholder[Int](87)).value.toBigInt >= max(bi43, bi62))\n            ) && (OUTPUTS(placeholder[Int](88)).propositionBytes == coll33)\n          ) && (OUTPUTS(placeholder[Int](89)).value.toBigInt >= max(bi43, bi62 * coll16(placeholder[Int](90)).toBigInt / bi40))\n        )} else { placeholder[Boolean](91) }\n      ) || if (((bool45 && (INPUTS.size == placeholder[Int](92))) && (OUTPUTS.size == placeholder[Int](93))) && (\n        CONTEXT.dataInputs.size == placeholder[Int](94)\n      )) {(\n        val l46 = l4 - l22\n        ((((bool32 && (l28 == l6)) && (coll36 == coll7)) && (l37 == l46)) && (OUTPUTS(placeholder[Int](95)).propositionBytes == coll38)) && (\n          OUTPUTS(placeholder[Int](96)).value >= l46 / l26 * l39 * l25\n        )\n      )} else { placeholder[Boolean](97) }\n    ) || if (bool44 && (!bool45)) { ((coll13 == coll38) && (coll29 == coll7)) && (l22 == l4) } else { placeholder[Boolean](98) }\n  )\n}",
  "address": "QV9uxhBMLxU3mXKZseRJ12P8kRj2hTFbkFzsQD3VcbGvA2yucuBcEqQ39x1n8vdqvukRsKH2B3xNi7jcqFSkMA34jGYrc8pjwb5VK3G4m9WSePNCevf5Nx4tm6BwBfC2AcHn21GedEqsCWJCEs8sX8PfVBquRBQduXJtEswAJrFKooGxXn64z9aEiU6P6quFUhiRtgTzrE41dhvEVh4DEWdhqPjJDYxnbnwUn3mjgYqeX22vgVZdE8EyiVBo5DhCz7yhjdVW7PtGbVLKHsXEr62Ni3kRvHQrz7kMtZUPsWgLg13ZNm6k689Zp5BKwNLDhYzFhqcmSs6JeBRa9aTDMTNqgwZNJwtuG2hSKRxqfh1UciQQh72MoJ1RNWDUC6Rt6PiVUSnjMX4khiHstMNB6sbzWKSsCAEbTF4V5yyaZDeE5FdwDWEt6oX52s5WD1MdTGLuJYzevjytQrBRpr6YyU1fZnKRRFHQCSj7PZT8ayjvuvb4pPFyWXRbd8iNTb8QF4MrhDqc26zSF3V2vQVxihc8ABVUeFqoSrKSkfyQEfZS96fysANDHVGPq7311nQrJLNKHcaFocSTZUF4hQHPuyzdSJZNxs9AdpuVMKTK1huqfRs3snSjrfg2UdrF5U27r7WTBB1Z8cSsZy3XA4CqvW48g3xkUof9jrGsXUVrCLwnFn65PYkSKR7jGWjP2k8AkR4MVhVdiaroa54ew5EENG451JDXf9U3w5GFqb89mcoZGMuZwbJ5vR5ndunzJkYtfo5MvHhUiS1BQi7giDJneTYgoRd58gxLFcBdpr6QRpJ4KeiQkxtqYN8ZrppoPUimaJTMdv1MZpt3MzABXihMYC1B9pVu8xW7bnSUo24FJWPq3AeawEKp8ZRtJW9NExf4SNMrqCc8F9o2VZnpyJStpkfruXyXGeJTCpU9it64bxyHwCs1VBdty8ZYhB8bQ2RGP7a3yCXEMi1Qz1dtEwuE4YjsCZFFYTHtDwJJ8EHSLu3dxTbgSFu15MX62mh6LkB8yBxAywSoUgvk4AfnKLQ7RC8yLFFdF4zyHbTkum3RMoe1xw5ft2nEKTjoBJdCkRmJMZYdfUuY8As4eVMb5VVjX9mSfsrKkuNWNjGgRqKZJGM2RYxWXKSTxVJX8X2E1UxdMU6nCD53cpXEyHYd3ZQCuBxUv6zi2djiCsyB2N9GpaoZpKZjYdZmhVCzxLw9cpu2vuf1s2yZJ5hncQPptK8tm5iykR2kPXtqZFfVNUKv2DxdStaWnH1J5iJvk7dS4z97dBgTMNtpqzVFaU6oAiMt3cp22VrWM1U9NqE8RhmVer35DR85Y7Ao2F1rqYqpiuzYCh6JpDqbEByfM6k1KjXxdcFrAZy2QpM93giygq9iaaCQSVfkMbJaQdnYB1KGL4MWX6HYgfRtKZy9trfoGd6PdCJW5PA14AZ2MyVNSbMzDtJ75J393AJeh3Q6XJ4NhikZhWaJnDCUimD84Twk2fSLpNjQyN7ZQ8c2TQZRJEbJGr6CyT4sjqXvwPHVbTPbR11KbBGKgEPayC3vh3mXscZiK1By4uCpb7foCf6Lf3wGoAN4LdevQGDd9Tay4CdyguLE1mj9WvcubPotC6zw8EVPqq2suoLfvz6HqsVjdb4ick5igvW3riDwgz2bA9FWgRxPvtJfLaArzkP28LgsYrKY55aYBbbBzM1N5MAaUvvjnwNSmekjAVZBRTJHbcdyULwmqXh13gymDW8zyYnSpo6cTMjwS1c889xqyT6Rm9ajUrgk6dEPp989z2WK96jhtxvD3b1uTccmjVTPa1v9Rcrib3r4QCfpWMdD37yZvYgWZJVb2yeNoSxmVtHB42YjsiaKoR6ZnQrXMYuQsomwP3PBmzvLathe5qGwhmp8hsnXo9PvaiMAzd5Cuz6ywef5uNh1eZ7UGPpXpvKf5AMheTyQUbSD8aXxV9oTLA5YodLZbBEu3ftdQNZNfb23PFXPnwpZi8Kk1nPRUjvs4vJH9yGq8NCCdc9Qm5gyusSfq5wE3pztkhVFUihEHn6wQeVVD6XxWstx5hjfQdkBNgUwTrCEwwRKjCyhDE3SzBEEkMgpprKDpBdtyBp8hvF7zxMZspEjVmENQH7S",
  "assets": [
    {
      "tokenId": "777777e5051f8a6bc30827ee41dd39e04bca1dba35236b9a26b494e0bac84f33",
      "index": 0,
      "amount": 1001,
      "name": "fakeUSD",
      "decimals": 2,
      "type": "EIP-004"
    }
  ],
  "additionalRegisters": {
    "R5": {
      "serializedValue": "0e240008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6",
      "sigmaType": "Coll[SByte]",
      "renderedValue": "0008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6"
    },
    "R6": {
      "serializedValue": "0e0130",
      "sigmaType": "Coll[SByte]",
      "renderedValue": "30"
    },
    "R8": {
      "serializedValue": "1109020280b0acf7f961e807e807d804bed6e2a1050a80897a",
      "sigmaType": "Coll[SLong]",
      "renderedValue": "[1,1,1682812800000,500,500,300,706499999,5,1000000]"
    },
    "R7": {
      "serializedValue": "63c0ac80020008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6bbf43601777777e5051f8a6bc30827ee41dd39e04bca1dba35236b9a26b494e0bac84f33e907060e2343414c4c5f66616b655553445f4552475f315f323032322d31322d32305f7065725f310e000e01306380e1eb170008cd0358ca7a890f5c237eca72e0d7f8290e808b089690504a0c47805cf489767ea53ec6c0360000f875b3cc3016a06b75ca5941a3440fc7e2141256869047a15f2e687698904930011109000280e0a3cda561e807e807d804020a80897a1a02240008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6240008cd039ed9a6df20fca487da2d3b58e822cdcc5bcfad4cca794eadf132afa3113f31a6535558c39e5834cf795b41f1635a36c7b7c5a84f9cb34f2f5d33a35a03fe882800",
      "sigmaType": null,
      "renderedValue": null
    },
    "R9": {
      "serializedValue": "08cd02042a3559387831c22aaec64a86969b6f2e4b7626b3f94cbec08123c5dc88d23e",
      "sigmaType": "SSigmaProp",
      "renderedValue": "02042a3559387831c22aaec64a86969b6f2e4b7626b3f94cbec08123c5dc88d23e"
    },
    "R4": {
      "serializedValue": "0e2b43414c4c5f66616b655553445f4552475f3730363439393939395f323032332d30342d33305f7065725f31",
      "sigmaType": "Coll[SByte]",
      "renderedValue": "43414c4c5f66616b655553445f4552475f3730363439393939395f323032332d30342d33305f7065725f31"
    }
  },
  "spentTransactionId": "b42a0e6eaf1812dc824d42defe1610f0f3a39ce8f6ba85bd768d0ec187880e05",
  "mainChain": true
}